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Phasd$hift Characteristics of Helical Phase Shifters

ROBERT SECKELMANN, MEMBER, IEEE

Abstract-The phase shtiters considered consist of a helix sur-
rounded by or surrounding a ferrite toroid. The ferrites work at

their maximum remanent magnetization. It is shown that the helix

surrounding a ferrite allows at any combination of frequency and
helix diameter a larger differential phase shift than the helix sur-
rounded by a ferrite does; and that in the latter helix the phase shift

is easily disturbed by the TEII mode. It is furthermore shown that

the 3x/4 per turn helix offers a larger fractional bandwidth than the

~/4 per turn helix does unless one uses ferrites with very low satura-
tion magnetization. The theoretical results are supplemented by ex-

perimental data.

INTRODUCTION

T

HE lIELI CAL PHASE shifters dealt with here

consist either of a helix surrounded by or sur-

rounding a ferrite toroid, remanent at saturation

magnetization. In both cases, differential phase shift can

be obtained when the electrical length of the helix is

(2wz+ l) A/4 per turn. Suhl and Walker [1] have ana-

lyzed the propagation characteristics of a helix sur-

rounded by a ferrite toroid. Hair [2] has studied and

developed a phase shifter with a 3X/4 per turn helix

surrounding a ferrite toroid.

These phase shifters are in general smaller and lighter

than others, e.g., those using ferrite toroids in rec-

tangular waveguides. The smallness is an advantage at

frequencies below, a handicap at frequencies above,

roughly 8 GHz. The helix surrounded by a ferrite toroid

allows good thermal contact between the ferrite and the

phase-shifter body. Thus it is relatively easy to keep the

ferrite cool.

In the following, the propagation characteristics of a

helix surrounded by and a helix surrounding a ferrite

toroid are compared with each other; for the plane helix,

the limiting case of both helices, the frequency depen-

dence of A/4 and 3A/4 per turn helical phase shifter are

derived. The theoretical results are obtained with

graphical

results.

A helix

“normal”

methods and compared with experimental

NORMAL AND INVERTED HELICES

surrounding a ferrite toroid shall be called a

helix, a helix surrounded by a ferrite toroid

shall be called an ‘(inverted” helix. The ferrite is mag-

netized circumferentially and—because of its tensor per-

meability—gives rise to different propagation constants

& (in the direction of the helix axis) for forward and

backward traveling waves. The differential propagation

constant or phase-shift coefficient A(3 = fl+ —(?_ deter-
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mines the differential phase shift between forward and

backward wave.

According to Fig. 1, the helix diameter (for infinitely

thin wire) is ro for both helices, the helix pitch is p, and

t= arc cot (27rr0/P) is the pitch angle. en, Ef, p., ~f are

the relative dielectric constants and permeabilities of the

nonferrite medium and the ferrite. Generally P. = 1,

while pf is a tensor defined by

IH’l
B = pO~fH with H = H. and

K –jk O

pf = jkp O

o 01

The tensor elements are

ti~ tih

(1)

w
k=

()
l–~’

w

(2)

where wh = TH is proportional to the external dc mag-

netic field H, Um = yihf, is proportional to the saturation

magnetization of the ferrite, a is the signal angular fre-

quency, and y is the gyromagnetic ratio. /30= u~poe, is

the propagation constant in free space.
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Fig. 1. Helix type phase shifters; (a) normal helix,
(b) inverted helix.

Suhl, Walker and Hair have calculated the propaga-

tion constants for helices idealized as follows:

1) The helix and the ferrite toroid are infinitely long.

2) The helix is infinitely thin, directly on the ferrite

surface and can be treated as a sheath helix.
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3)

4)

5)

6)

Helix and ferrite and the whole device in general

are lossless.

The propagation constant @ for axial direc tion, the

quantity to be found, is very large (slow wave)

compared with all other propagation constants.

All fields are independent of the circum [erential

angle, i.e., only the zero-order mode of propaga-

tion on a helix is present.

The ferrite wall is so thick that in the normal helix

the center hole can be neglected, and that in the

inverted helix the wall can be assumed to be infi-

nitely thick.

Furthermore, it is assumed by Hair and here:

7) The device works at remanent magnetization.

8) The remanent magnetization is equaI to the satu-

ration magnetization.

9) The gyrornagnetic resonance frequency of the fer-

rite is lower than the signal frequency, i.e., the

device works “below resonance.’~

The theory trealts the switching wire and the shield sur-

rounding the actual phase shifter as nonexistent. With

these assumptions the determinantal equations for the

propagation constants are for the normal helix as given

by Hair

Kl(&O) Il(&o)

\ co]
and for the inverted helix as given by Suhl and Walker

I1(@rO) K1(j3ro)
e. — + q

R’

()

Io(&o) K@riJ

@, cot * = 1 IO(sro) 1
— ~(4)

wo(2L?t’o)
—— -!- ——

pn I1(&o) ‘
(1* :’I ‘1(2p’0)
\ cdl

10 (and KO), 11 (and KJ are zero and first-order modi-

fied Bessel functions, with finite values at (3Y0 = O

(or &O-+ m , respectively). MO (and WO), Ml (and WI)

are zero and first-order hypergeometric functions with

finite values at 2@ro = O (or 2/37.-+ ~, respectively). The

expressions become for the plane helix (ro—~ m )

()

/9 2 % + q
(5)

@ocott = 1 1“
—+——
M.

()
I*@:

(JJ

In Fig. 2 the reduced propagation constants /&d

= /3j.//3Ocot+ are plotted vs. uJa with the reduced

helix radius r.e~ = rO~Ocot# as parameter. Figure 2(a)

for the normal helix is a copy of the graph given by

Hair [2], while Fig. 2(b) for the inverted helix was ob-

tained with ej = 12 from Figs. 5 and 13 of Suhl’s and

Walker’s report [I] for ~ as a function of the externally

applied field H. From Fig. 2, the reduced phase-

shift coefficient Afl,.~ = A~/@Ocot$ = (j?+ – ~_)/@ocotl~ is

readily obtained and plotted in Fig. 3 vs. oJu with

Y@O cot @ as parameters. The most interesting result is

that the normal helix possesses a larger phase-shift co-

efficient than the inverted helix does for any combina-

tion of ti~/u and helix diameter. For rO@O cot ~>5,, the

plane helix is a good approximation for bc,th the normal

and the inverted helices.

It was assumed that ~ is very large compared with

any other propagation constant. Figure 2 shows that for

the backward traveling wave (@–) the assumption is vio-

lated for wJoJ >0.7. There the results are not reliable.

Figure 3 shows that for OAJU <0.6 the reduced p base

shift coefficient increases approximately linearly with

urn/w.

A/4 AND 3A/4 PER TURN HELIICES

The reduced phase-shift coefficient of Fig. 2 has l,leen

derived by excluding all but the zero-order helix mode.

Consequently A@,.d allows a differential phase shift for

all frequencies for which wJw <1. In practice, however,

frequencies with maximum and zero phase shift occur,

due to the presence of higher-order helix rnocles. In par-

ticular, at h/4 per turn the zero-order mode with posi-

tive phase velocity is predominant and gives rise to

positive differential phase shift, while at 3X/4 per turn

the first-order helix mode with negative phase velocity

prevails, giving rise to negative differential phase shift.

At A/2 per turn both modes are equally strong and pro-

duce no phase shift. This effect can be accounted for by

multiplying the A~(a) function with a. polarization

function

‘(w)‘sin(:<z”)‘ith (6)

where c is the velocity of light in free space, e. is the

effective relative dielectric constant for the helix, and

1, is the helix length per turn. For a ferrite of Iengt:h L

the total differential phase shift is

A~/rad = A~PL~<. (7)

The differential line length is obtained by multiplying

the phase shift by A/27r, where h is the free space wave-

length at angular frequency co.

At = (Ad/rad) (X/2m). (8)

For comparisons it is convenient to normalize di kfer-

ential phase shift and line length as follows:

Reduced phase-shift coefficient

A~,.d = (~+ – ,&-)/@O COt @ ~ OJ~/’OA (9)

Normalized phase-shift coefficient
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propagation constants.

Normalized differential phase shift

()A@nOrm = A,f3n0,mP(w) = A,fl.o,n sin z ~ ~

x sin (w/wo) for nA/4 per turn at cdo. (11)

Normalized differential line length

Alnorm = Ac&J/ko = AP,,~P(a) ~ sin(@/@O)/(@/@o) (12)

with AO = free space wavelength at wO. The propor-

tionality expressions are approximations for A&< 0.6.

For a plane helix these four quantities are plotted vs.

u/uO in Fig. 4. According to Figs. 2 and 3 one should

expect a large phase shift at the gyromagnetic resonance

frequency u= u~. As already noted, these curves do not

hold true there. Besides, the ferrite losses can not be

neglected there. Lax and Button ([3 ], Fig. 4-4) illustrate

the susceptibility for circularly polarized fields in an

unbounded ferrite medium, At the resonance frequency

x_’, the loss causing part, goes through a maximum and

X–fr, the phase-shift causing part, shows a zero. Correc-

tions due to this gyromagnetic resonance are indicated

in Fig. 4 in dotted lines.

The 3X/4 per turn helix shows a pronounced resonance

effect for both the differential phase-shift and line

length curves. The resonance frequency is nearly inde-

pendent of the phase-shift coefficient, This means that

the helix dimensions and the effective dielectric con-

stant determine the center frequency. The X/4 per turn

helix shows a resonance effect for the phase shift only

for WJuo <0.5, where the phase shift per length is quite

low. The differential line length shows no resonance
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Fig. 3. Reduced differential phase-shift coefficient.

effect. The differential phase-shift coefficient determines

essentially the differential phase shift and line length

function. The gyromagnetic resonance at w = co~ is de-

structive. The most interesting result is that with a h/4

per turn helix a broadband differential phase shift can

be expected only for wJuo <0.5 and that even then the

differential line length is strongly frequency dependent.

EXPERIMENTAL RESULTS

Actual helix type phase shifters consist of the helix-

ferrite combination and a conducting cylinder shielding

this combination as indicated in Figs. 5 and 6. In addi-

tion to the helix mode, a TE1l mode can propagate be-

tween the helix and the shield. For normal helices the
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cutoff condition for the TEll mode (the mean circum-

ference is approximately one wavelength in the un-

bounded medium) is usually reached at frequencies

higher than those for which the helix modes experience

3X/4 per turn. In the inverted helix the TEu mode can

propagate at lower frequencies and is therefore damag-

ing. Figure 5 shows the mode chart [4] and a typical

differential phase shift vs. frequency characteristic for

an inverted helix. A good agreement between measured

insertion length and propagation characteristic has been

achieved only at frequencies below the TE1l cutoff fre-

quency (about 1.3–1.4 GHz). Below 1.3 GHz the zero-

order helical mode prevails, at 1.3 GHz the first-order

mode becomes predominant, but at only slightly higher

frequencies coupling to the fast TEH mode begins and

the phase shift decays. The 3h/4 per turn resonance is

suppressed by the TEu mode. The device is an ex-

tremely narrow-band one.

Figure 6 shows the differential line length and phase

shift for a normal helix. The results correspond to the

theory. The larger bandwidth is obtained at 3h/4 per

turn and the TEH mode takes over at about 7.4 GHz,

i.e., above the 3h/4 per turn range.

CONCLUSIONS

“Normal” helix type phase shifters are superior to

‘(inverted” helix type ones because they offer a higher

differential phase shift per length and they do not suffer

as easily from TE1l modes. The poor electrical charac-

teristics of the inverted helix type phase shifter offset

the advantage of having a good thermal contact be-

tween ferrite and phase-shifter body in this device. In

the 3h/4 per turn helix the phase shift vs. frequency be-

havior is essentially determined by the device geometry

and effective dielectric constant. In the A/4 per turn

helix the phase-shift coefficient determines mainly the

frequency dependence. The gyromagnetic resonance

effect is destructive, unless LoJoO <0.5. Under this

same condition the 3h/4 per turn helix offers the larger

fractional bandwidth.
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